Extensions 1→N→G→Q→1 with N=C88 and Q=C22

Direct product G=N×Q with N=C88 and Q=C22
dρLabelID
C22×C88352C2^2xC88352,164

Semidirect products G=N:Q with N=C88 and Q=C22
extensionφ:Q→Aut NdρLabelID
C881C22 = C8⋊D22φ: C22/C1C22 ⊆ Aut C88884+C88:1C2^2352,103
C882C22 = D8×D11φ: C22/C1C22 ⊆ Aut C88884+C88:2C2^2352,105
C883C22 = D88⋊C2φ: C22/C1C22 ⊆ Aut C88884+C88:3C2^2352,109
C884C22 = D4⋊D22φ: C22/C1C22 ⊆ Aut C88884C88:4C2^2352,106
C885C22 = SD16×D11φ: C22/C1C22 ⊆ Aut C88884C88:5C2^2352,108
C886C22 = M4(2)×D11φ: C22/C1C22 ⊆ Aut C88884C88:6C2^2352,101
C887C22 = C11×C8⋊C22φ: C22/C1C22 ⊆ Aut C88884C88:7C2^2352,171
C888C22 = C2×D88φ: C22/C2C2 ⊆ Aut C88176C88:8C2^2352,98
C889C22 = C2×C8⋊D11φ: C22/C2C2 ⊆ Aut C88176C88:9C2^2352,97
C8810C22 = C2×C8×D11φ: C22/C2C2 ⊆ Aut C88176C88:10C2^2352,94
C8811C22 = C2×C88⋊C2φ: C22/C2C2 ⊆ Aut C88176C88:11C2^2352,95
C8812C22 = D8×C22φ: C22/C2C2 ⊆ Aut C88176C88:12C2^2352,167
C8813C22 = SD16×C22φ: C22/C2C2 ⊆ Aut C88176C88:13C2^2352,168
C8814C22 = M4(2)×C22φ: C22/C2C2 ⊆ Aut C88176C88:14C2^2352,165

Non-split extensions G=N.Q with N=C88 and Q=C22
extensionφ:Q→Aut NdρLabelID
C88.1C22 = C8.D22φ: C22/C1C22 ⊆ Aut C881764-C88.1C2^2352,104
C88.2C22 = C11⋊D16φ: C22/C1C22 ⊆ Aut C881764+C88.2C2^2352,32
C88.3C22 = D8.D11φ: C22/C1C22 ⊆ Aut C881764-C88.3C2^2352,33
C88.4C22 = C8.6D22φ: C22/C1C22 ⊆ Aut C881764+C88.4C2^2352,34
C88.5C22 = C11⋊Q32φ: C22/C1C22 ⊆ Aut C883524-C88.5C2^2352,35
C88.6C22 = D83D11φ: C22/C1C22 ⊆ Aut C881764-C88.6C2^2352,107
C88.7C22 = Q16×D11φ: C22/C1C22 ⊆ Aut C881764-C88.7C2^2352,112
C88.8C22 = D885C2φ: C22/C1C22 ⊆ Aut C881764+C88.8C2^2352,114
C88.9C22 = D4.D22φ: C22/C1C22 ⊆ Aut C881764-C88.9C2^2352,110
C88.10C22 = Q16⋊D11φ: C22/C1C22 ⊆ Aut C881764C88.10C2^2352,113
C88.11C22 = Q8.D22φ: C22/C1C22 ⊆ Aut C881764C88.11C2^2352,111
C88.12C22 = D44.C4φ: C22/C1C22 ⊆ Aut C881764C88.12C2^2352,102
C88.13C22 = C11×C8.C22φ: C22/C1C22 ⊆ Aut C881764C88.13C2^2352,172
C88.14C22 = D176φ: C22/C2C2 ⊆ Aut C881762+C88.14C2^2352,5
C88.15C22 = C176⋊C2φ: C22/C2C2 ⊆ Aut C881762C88.15C2^2352,6
C88.16C22 = Dic88φ: C22/C2C2 ⊆ Aut C883522-C88.16C2^2352,7
C88.17C22 = D887C2φ: C22/C2C2 ⊆ Aut C881762C88.17C2^2352,99
C88.18C22 = C2×Dic44φ: C22/C2C2 ⊆ Aut C88352C88.18C2^2352,100
C88.19C22 = C16×D11φ: C22/C2C2 ⊆ Aut C881762C88.19C2^2352,3
C88.20C22 = D22.C8φ: C22/C2C2 ⊆ Aut C881762C88.20C2^2352,4
C88.21C22 = C2×C11⋊C16φ: C22/C2C2 ⊆ Aut C88352C88.21C2^2352,17
C88.22C22 = C44.C8φ: C22/C2C2 ⊆ Aut C881762C88.22C2^2352,18
C88.23C22 = D44.2C4φ: C22/C2C2 ⊆ Aut C881762C88.23C2^2352,96
C88.24C22 = C11×D16φ: C22/C2C2 ⊆ Aut C881762C88.24C2^2352,60
C88.25C22 = C11×SD32φ: C22/C2C2 ⊆ Aut C881762C88.25C2^2352,61
C88.26C22 = C11×Q32φ: C22/C2C2 ⊆ Aut C883522C88.26C2^2352,62
C88.27C22 = Q16×C22φ: C22/C2C2 ⊆ Aut C88352C88.27C2^2352,169
C88.28C22 = C11×C4○D8φ: C22/C2C2 ⊆ Aut C881762C88.28C2^2352,170
C88.29C22 = C11×M5(2)central extension (φ=1)1762C88.29C2^2352,59
C88.30C22 = C11×C8○D4central extension (φ=1)1762C88.30C2^2352,166

׿
×
𝔽